Myosin lever disposition during length oscillations when power stroke tilting is reduced.

نویسندگان

  • P J Griffiths
  • M A Bagni
  • B Colombini
  • H Amenitsch
  • S Bernstorff
  • C C Ashley
  • G Cecchi
چکیده

M3 reflection intensity (I(M3)) from tetanized, intact skeletal muscle fiber bundles was measured during sinusoidal length oscillations at 2.8 kHz, a frequency at which the myosin motor's power stroke is greatly reduced. I(M3) signals were approximately sinusoidal, but showed a "double peak" distortion previously observed only at lower oscillation frequencies. A tilting lever arm model simulated this distortion, where I(M3) was calculated from the molecular structure of myosin subfragment 1 (S1). Simulations showed an isometric lever arm disposition close to normal to the filament axis at isometric tension, similar to that found using lower oscillation frequencies, where the power stroke contributes more toward total S1 movement. Inclusion of a second detached S1 in each actin-bound myosin dimer increased simulated I(M3) signal amplitude and improved agreement with the experimental data. The best agreement was obtained when detached heads have a fixed orientation, insensitive to length changes, and similar to that of attached heads at tetanus plateau. This configuration also accounts for the variations in relative intensity of the two main peaks of the M3 reflection substructure after a length change. This evidence of an I(M3) signal distortion when power stroke tilting is suppressed, provided that a large enough amplitude of length oscillation is used, is consistent with the tilting lever arm model of the power stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.

Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing durin...

متن کامل

Role of the lever arm in the processive stepping of myosin V.

Myosin V is a two-headed molecular motor that binds six light chains per heavy chain, which creates unusually long lever arms. This motor moves processively along its actin track in discrete 36-nm steps. Our model is that one head of the two-headed myosin V tightly binds to actin and swings its long lever arm through a large angle, providing a stroke. We created single-headed constructs with di...

متن کامل

Structural mechanism of the recovery stroke in the myosin molecular motor.

The power stroke pulling myosin along actin filaments during muscle contraction is achieved by a large rotation ( approximately 60 degrees ) of the myosin lever arm after ATP hydrolysis. Upon binding the next ATP, myosin dissociates from actin, but its ATPase site is still partially open and catalytically off. Myosin must then close and activate its ATPase site while returning the lever arm for...

متن کامل

Myosin VI walks "wiggly" on actin with large and variable tilting.

Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI alo...

متن کامل

3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle

Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. "tilting of the lever-arm" has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 1  شماره 

صفحات  -

تاریخ انتشار 2005